

<u>UNIT –II</u> (CALCULUS AND MEAN VALUE THEOREMS)

1) a) Verify Rolle's Theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $(0, \pi)$.	[6M]
b) Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, e].	[6M]
2) a) Verify Cauchy's mean value theorem for $f(x) = sinx$ and $g(x) = cosx$ in $\left[0, \frac{\pi}{2}\right]$.	[6M]
b) Verify Lagrange's Mean value theorem for the functions $f(x) = x(x-1)(x-2)in \left[0,\frac{1}{2}\right]$.	[6M]
3) Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}(\frac{3}{5}) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	[12M]
4) a) State and verify Rolle's Theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)}\right]$ in $[a, b] (x \neq 0)$.	[6M]
b) Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4].	[6M]
5) a) Verify Cauchy's Mean value theorem for the functions $f(x) = x^3$; $g(x) = x^2$ in [1,2]	[6M]
b) Express the polynomial $2x^3 + 7x^2 + x$ -6 in power of $(x - 2)$ assigning Taylor's series.	[6M]
6) a) Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places using Taylor's theorem.	[6M]
b) Expand $\log_e x$ in powers of (x-1) and hence evaluate $\log 1.1$ correct to 4 decimal places	
using Taylor's theorem.	[6M]
7) a) Using Maclaurin's series expand $\tan x$ up to the fifth power of x and hence	
find the series for log (sec x).	[6M]
b) Verify the Rolle's Theorem can be applied to the function $f(x) = \tan x$ in $[0,\pi]$	[6M]
8) a) Verify Cauchy's mean value theorem for $f(x) = e^x$ and $g(x) = e^{-x}$ in [a, b].	[6M]
b) Show that for any $x > 0$, $1 + x < e^x < 1 + xe^x$ using Lagrange's mean value theorem.	[6M]
9) a) Verify Rolle's theorem for the function $f(x) = x(x+3)e^{-\frac{x}{2}}$ in [-3,0]	[6M]
b) Expand sin x powers of $(x - \frac{\pi}{2})$ up to the term containing $(x - \frac{\pi}{2})^4$ assigning Taylor's series.	[6M]
10) Obtain the Maclaurin's series expression of the following functions:	[12M]
i) e^x ii) $\cos x$ iii) $\sin x$	

QUESTION BANK 2019

<u>UNIT –III</u> (MULTIVARIABLE CALCULUS)

1) a) Discuss the continuity of the function
$$f(x, y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & at (0, 0) \end{cases}$$
 [6M]

b) If
$$U = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
; $x^2 + y^2 + z^2 \neq 0$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$ [6M]

2) a) If
$$u = tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. [6M]

b) If
$$U = log(x^3 + y^3 + z^3 - 3xyz)$$
 prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(X+Y+Z)^2}$. [6M]

3) a) Find
$$\frac{du}{dt}$$
 as a total derivative; if $u = x^2 y^3$ where $x = logt$ and $y = e^t$. [6M]

b) If
$$z = xy^2 + x^2y$$
; where $x = at^2$, $y = 2at$, find $\frac{dz}{dt}$ as a total derivative. [6M]

4) a) If
$$u = \sin^{-1}(x - y)$$
, where $x = 3t$, $y = 4t^3$, then show that $\frac{du}{dt} = \frac{3}{\sqrt{1 - t^2}}$. [6M]

b) If
$$u = x^2 + y^2 + z^2$$
 and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{du}{dt} = ?$ [6M]

5) a) If
$$u = x^2 - 2y$$
; $v = x + y + z$, $w = x - 2y + 3z$, then find Jacobian $J\left(\frac{u, v, w}{x, y, z}\right)$. [6M]

b) Verify if
$$u = 2x - y + 3z$$
, $v = 2x - y - z$, $w = 2x - y + z$ are functionally dependent
and if so, find the relation between them.

6) a) In
$$u = x + 3y^2 - z^3$$
, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,-1,0). [6M]

b) If
$$u = x\sqrt{(1-y^2)} + y\sqrt{(1-x^2)}$$
 and $v = \sin^{-1}x + \sin^{-1}y$, then

show that
$$u, v$$
 are functionally dependent. [6M]

7) a) If
$$u = \frac{x+y}{1-xy}$$
 and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$? [6M]

b) Find the Maximum and Minimum values of $f(x, y) = x^3 + y^3 - 3axy$. [6M]

9) a) Find the shortest distance from origin to the surface $xyz^2 = 2$. [6M]

b) Find the minimum value of
$$x^2 + y^2 + z^2$$
 given $x + y + z = 3a$. [6M]

a) Find a point on the plane 3x + 2y + z - 12 = 0, which is nearest to the origin. [6M] b) Find the shortest and longest distance from the point (3,1, -1)to the sphere x²+y² + z² = 4. [6M]

[6M]

[6M]

<u>UNIT –IV</u> (INTEGRAL CALCULUS)

1. a) Evaluate the following improper integrals i) $\int_{1}^{\infty} \frac{1}{x^4} dx$. ii) $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$.	[6M]
b) Prove that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi.$	[6M]
2. a) Evaluate $\int_0^5 \int_0^{x^2} x(x^2 + y^2) dx dy$	[6M]
b) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}.$	[6M]
3. a) Evaluate $\iint (x^2 + y^2) dx dy$ in the positive quadrant for which $x + y \le 1$.	[6M]
b) Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$.	[6M]
4. a) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} (x^2 + y^2) dy dx$	[6M]
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting to polar coordinates.	[6M]
5. a) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.	[6M]
b) Evaluate the integral by transforming into polar coordinates $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y\sqrt{x^{2}+y^{2}} dx dy.$	[6M]
6. a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$.	[6M]
b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{0}^{\infty} \frac{e^{-y}}{y} dy dx$.	[6M]
7. Change the order of integration in $I = \int_{0}^{1} \int_{x^2}^{2-x} (xy) dy dx$ and hence evaluate the same.	[12M]
8. a) By changing order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$.	[6M]
b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z.}^{x+z} (x+y+z) dx dy dz$	[6M]
9. a) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	[6M]
b) Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z dz dx dy$.	[6M]
10. a) Calculate the volume of the solid bounded by the planes x = 0, y = 0, x + y + z = a and $z = 0$.	[6M]
b) Evaluate the triple integral $\iiint xy^2 z dx dy dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.	[6M]

Algebra and Calculus

<u>UNIT –V</u> (SPECIAL FUNCTIONS)

1 a) Define Beta and Gamma functions and Prove that $\Gamma(1) = 1$.	[6M]
b) Evaluate $\int_0^1 x^2 \left(\log \frac{1}{x}\right)^3$.	[6M]
2. a) Prove that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.	[6M]
b) Prove that $\int_0^1 \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5} B\left(\frac{2}{5}, \frac{1}{2}\right).$	[6M]
3. a) Evaluate $\int_0^\infty \sqrt{x} e^{-x^2} dx$.	[6M]
b) Prove that $\int_{0}^{1} \frac{x}{\sqrt{1-x^{2}}} dx = \frac{1}{2} \beta (1, \frac{1}{2}).$	[6M]
4. a) Evaluate $\int_0^\infty e^{-a^2x^2} dx$.	[6M]
b) Express the integral $\int_0^3 \frac{dx}{\sqrt{9-x^2}}$ in terms of Beta function	[6M]
5. a) Prove that $\int_0^1 (\log \frac{1}{x})^{n-1} dx = \tau(n)$.	[6M]
b) Prove that $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cdot \cos^{2n-1}\theta d\theta$.	[6M]
6. a) Evaluate $\int_0^1 x^4 \left(\log \frac{1}{x} \right)^3 dx$.	[6M]
b) Prove that $\int_0^1 \sqrt{1 - y^4} dy = \frac{1}{4} \beta \left(\frac{1}{4}, \frac{3}{2} \right)$	[6M]
7. a) Evaluate $\int_0^1 \frac{dx}{\sqrt{-\log x}}$	[6M]
b) Evaluate $\beta\left(\frac{4}{3},\frac{5}{3}\right)$	[6M]
8. a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	[6M]
b) Prove that $\int_0^{\frac{\pi}{2}} \sin^2\theta \cos^4\theta d\theta = \frac{\pi}{32}$	[6M]
9. a) Show that $\int_0^\infty x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$	[6M]
b) Evaluate $\int_0^1 x^3 \sqrt{1-x} dx$ using β - Γ functions.	[6M]
10. Show that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} x \int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\pi}{4}$.	[12M]

Algebra and Calculus